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Abstracl. The entire aystal structure of each member of the series of Ry, FeqBy
compounds is built up from the interpenetration of two incommensurable subsiructures:
the R substructure and the Fe-B substructure. In their [uv0] electron diffraction
palterns, satellite reftections due to the modulation occur in addition to the basic
reflections corresponding to either the Fe-B substructure or the Nd substructure. To
study the systematic extinction conditions for the observed x-ray and electron diffraction
patierns, symmetry analyses have been performed by means of two approaches—by
considering the three-dimensional space group of the commensurate superceils, and
by considering the fourdimensional superspace group developed by de Wolff & af .
The individual symmetry of the substructure has served as the basis for each approach
in this paper. Examination of the symmelry under the commensurate approximation
is the crucial step for the structure analysis of the Vemier structures. However, the
occurrence and distribution of satellite refleclions in the electron diffraction patterns
cannol be interpreted within this framework. The superspace group characterization of
these compounds provides a method of giving some insight into the general features
of the conditions of the systematic extinction observed in the diffraction patterns of
Ri4 Fe4By compounds.

1. General features of R, Fe,B, compounds

Several experimental and theoretical investigations concerning the crystal structural
aspects of R, Fe,B, (R tepresents rare-earth elements, e.g. R = Ce, Pr, Nd, Sm,
Gd and Tb) compounds have been reported in recent years (Braun er al 1982,
Bezinge et al 1985, 1987, Givord et al 1985, 1986a,b, Tian e al 1988, Zhao and
Ma 1988, 1989, Zhao et al 1989a,b,c,d). Based on the atomic parameters reported
by Kuma and Bilonizhbo (1975) and Givord et ol (1986b), the (001) and (110)
crystallographic projections of Nd,,(Fe,B,); and NdCo,B, are visualized in figure 1.
The entire crystal structure is formed by the interpenetration of two substructures.
One is the Fe-B substructure, a threc-dimensional framework consisting of edge-
sharing iron tetrahedra and boron atom pairs. The other one is the R substructure,
which is defined by R atoms in the form of infinite chains along the ¢ axis. These
two substructures, both of tetragonal symmetry, have the same dimensions in the
tetragonal basal plane. However, their periods in the ¢ direction do not match
each other. Moreover, the value of c(Fe-B)/c(R) as a function of composition
z in R_Fe,B, alloys is approximately expressed by ratios of two relatively small
integers, Such a feature can be characterized by the chimney-ladder structure or
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the Vernier structure, which was also found to occur in MnSi,__ (e.g. Knott et al
1967, Jeitschko and Parthé 1967) and Ba,, Fe,S, (e.g. Grey 1974, Hoggins and
Steinfink 1977). Electron diffraction and electron microscopic studies on R, Fe,B,
compounds with R = Pr (Tian e al 1988) and R = Nd (Zhao e a! 1989a,b,c,d)
revealed the incommensurability of their crystal structures. Despite the fact that
more and more incommensurately modulated crystal structures have been found in
solid materials, compounds which consist of two or more mutually incommensurable
crystallographic subsystems, such as Nd,,  Fe,B,, are less common. Also, it was
reported by Zhao e al (1989d) that these compounds where R = Nd present a novel
example of the infinitely adaptive structures proposed by Anderson (1973, 1977).
Since the periodicity mismatch happens only in the ¢ direction (see figures 1(b) and
1(c)), the most characteristic electron diffraction patterns for R, Fe,B, compounds
are the [uv0] sections in which the satellite reflections appear simultaneously with
the basic reflections. The occurrence and distribution of the systematic extinction
conditions in the observed diffraction patterns of R, Fe,B, compounds, generally
associated with the symmetry of their crystal structures, have not been well interpreted
as yet. In order to characterize the symmetry of R, Fe,B, compounds, and then to
understand their diffraction patterns, two approaches are attempted in the following
sections. The fundamentals for each approach will be briefly summarized separately.

2. Three-dimensional space group in the commensurate supercell

Strictly speaking, the periodicity of R, Fe,B, compounds should be defined by two
translation vectors c(Fe-B) and c(R). In spite of this, one can always choose a number
of pairs of integers p and g, within a specified tolerance, to meet the need of the
relation p/q = ¢(Fe-B)/c(R). Consequently, an artificial superstructure R, (Fe,B, ),
whose ¢ dimension is defined by the smallest common multiple of ¢(Fe-B) and ¢(R)
(ie. ¢ = pc(R) = qc(Fe-B)), can be constructed. In such a way, one recovers the
translational symmetry of the compounds and, hence, three-dimensional space group
characterization applies.

2.1. Commensurate models and their space groups

The symmetry relation between a derivative crystal structure and its parent structure
has been discussed by Buerger (1947). It was proposed that the symmetry of a
derivative structure is a subgroup of the space group of the parent structure. In
the case of R, Fe,B, compounds, the symmetry of the entire crystal structure must
be compatible with the individual symmetry of both the substructures. Either the -
Fe-B substructure or the R substructure can be regarded as the parent structure of
the commensurate superstructure R, (Fe,B,),. Consequently, the highest symmetry
of R, (Fe,B,), is the maximum common subgroup of the space groups of the Fe-B
substructure and the R substructure. As reported by Givord et af (1985), the symmetry
of the Fe—B substructure is P4, /ncm and that of the R substructure is 14/ mmm.
In view of the centrosymmetries of both substructures, it is reasonable to suppose that
the superstructure R, (Fe,B,), is also centrosymmetric, and one should superimpose
its symmetry centre onto those of I4/mmm and P4;/ncm. Here the space groups
of the substructures are expressed in terms of the space group generators and the
translation vectors. If we define 2/m at (}, -1, 4) with respect to 4 as the origin of
P4, fnem, one may divide its symmetry elemems into two parts:



Diffraction patterns of Nd, Fe,B, compounds 9223

Figure 1. (@) The (001) crystallographic projection of NdCoyBy (that for Nd, FeqBy
is slightly different). () and (¢} The (110) crystallographic projections of NdCo,By
and Nd,; .FesB4, respectively, which visualize the feature of a Vernier structure or a
chimney-ladder structuré. Large circle, Nd atom; medium circle, Fe (or Co) atom; small
circle, B atom. (The figures were produced by using the structural parameters of Kuzma
and Bilonizhbo (1975) and Givord er af (1986b).)

(a) a translation part
(1,0, 0) 0, 1,0 (0,0, 1/q) 2.1)

{b) an orthogonal part

z,y, 2 1-%, -y 2 -y, 2,1/2¢+2  y,;—=,1/2q+ =
2, 1+y,1/2¢-= Y4z, 9,1/2q— = vy, t4a, 2 ¥, &,
2,9, 2 t4e,3+y, 2 14y & 1Y29-z G i+ 1/2¢-2
“i~w1/2¢+z  j-zu 12tz jmwpi-ez yoa
22

In the case of the R substructure, the 2/m which i at (1, —1, 1) with respect to
4/mmn is also chosen as the origin of [4/mmm. Then it follows that:
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Figure 2. (a) and (b) Two examples of diffraction patterns which can be simulated by
the commensurate pmdels Rz;41(FesBa)yj—q: (@) for j = 8 and (b) for 7 = 9. (¢)
Systematics of the [130] pattern for the superstruciure Ri7(FesBy)i5. Note the selection
rule of i =15f + 173, as discussed in the text.
(a) for the translation part
' 1
(15 0, O) (0$ 11 0) (0, Os 1/p) (j’ %s 1/2])) (23)

(b) for the orthogonal part

T, Y, 2 z, 9, 1/2p+ = ﬂ,%+a:,z %+y,i,z

Bitu i jte,§E yh x, £ g, % 1/2p— 2 »
£, 9,2 r,y,1/2p— 2 y,%—-a:,é %—y,m,i -
L B §r & 2 v, @, 1/2p + 2.

The maximum number of common subgroups should be formed by the maximum
number of mathematical intersections of operations (2.1)~(2.4). By proper repetition
of the translation operations in (2.1) and (2.3), common translation vectors for both
Space groups can be easily obtained, which are expressed as

with regard to the orthogonal generators, the parity of p and ¢ needs to be taken into
account. By applying the translational vector (1, 1, 1/2p) p times to (} + ¥, &, 2),
for instance, one has the transformation form for [4/mmim:

(3, L1yl +y, 2, 2) > ((p+ 1)/2+y, p/2—2, } + 2). (2.6)
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When p is odd, the resultant in (2.6) is (y, § — =, 1 + z). Its equi-point, on the
other hand, can aiso be readily obtained from P4,/ncm by applying the translation
vector (0, 0, 1/9) o (y, 3 -z, } + 2) ((g— 1)/2) times if g is supposed odd.

Similarly, it can be shown that the obtained intersections of the orthogonal
generators may be classified into the following three categories.

(1) p odd and q odd

Y,z §-E3-Y oz iYL itz g i-2,3+2 en
& 4,2 3+e,i+v, i 1ty i-z gite -z
Apparently, the orthogonal generators in (2.7) combine with the translation vectors
in (2.5) and are actually the entire generators of the space group P4,/n.
Known examples for this case are Cey;(Fe,Byhs, Pty (Fe By, Ndy (FeyBy)sg,
Smy,(Fe,B,),s, Gdsa(FeyB,)y and Ths (Fe,B,),, (Parthé and Chabot 1984, Bezinge
et al 1985). Indeed the practical structure refinement of Sm,,(Fe,B,);; was made
utilizing the same space group assignment (Bezinge er al 1985). The diffraction
patterns given in figures 2(a) and (b), which can be ascribed to Nd,,(Fe,B,),s and
Nd,y(Fe;B,),;, also belong to this category.
(2) p even and ¢ odd

1 = 1 1 1 = 1
_"'C,i_"ysz xsi+y!f_z 5+w,y,5—z

1 s 1 i 1
+:c,§+y,z Iai—yei'i'z E_:E,ya%'l'z'

T, Y, 2

(2.8)

2,9, 2

Obviously, the operations in (2.5) and (2.8) constitute an orthorhombic space group
Pcen. Givord et al (1985, 1986a,b) have performed the structure refinements for
two commensurate superstructures Nd,(Fe,B,), and Gdg(Fe,B,); just based on this
space group.

(3) p odd and g even

x, Y,z %_ws%"’y,z ysxa%+z %+y1%+$,%_z (29)

- = o= 1 = = = 1 1 1 1
z, 4,2 jte, 34y, 2 Yr Ty 53— 2 3~ Y iz—%,3+2

Unlike the cases in categories (1) and (2), the orthogonal operations in (2.9), when
combined with (2.5), cannot form either a tetragonal space group or an orthorhombic
space group. The generators in (2.9), however, reveal the existence of several
symmetry operations, such as centrosymmetry and two c-glide planes along the
diagonals. Thus an alternative treatment was attempted by choosing an enlarged
supercell with A = a4+ b, B = b—a and C = ¢. For such a selected supercell,
P4,/nem and I4/mmm then take the forms of ‘C4;/nmc’ and ‘F4/mmm’,
respectively. Using a similar procedure to the one mentioned above, the intersection
of their orthogonal part under the implication of odd p and even ¢ can be obtained,

which is expressed as
1 - - 1 1 =1
Ty Y, 2 F—E, Y,z T,Yy, 73— % stz ¥ 37—z
* ¥ 2 3 21 ) : (2'10)
f,g,f %+m!y!2 m9g?f+z 'z__mayai'i'z-
By noting the extra non-primitive translation (3, 3,0) with reference to
(A, B, C), it readily known that the space group for this case is ‘Ccca’ in the
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revised supercell. Up until now, no structure analysis has been made using this
space group. However, the actual structures of Nd, , Fe,B, compounds inevitably
make several numbers of their infinitely adapted structures fall into or approach
such a category as the commensurate model owing to the quasi-continuous variation
of ¢(Fe-B)/c(R) as a function of z in R Fe,B,. Examples of this case include
Ndy(Fe B,)g, Ndy, (Fe B,)yy, Nd;;(Fe,B,),, and Nds(Fe,B,),,, which were observed
by electron diffraction (Zhao er al 1989d).

As demonstrated above, the symmetry of the commensurate superstructures
R, (Fe;B,), depends on the parity of p and g, which can be explained by P4,/n,
Pcen and ‘Ceca’ respectively, for three different parity combinations of p and q.

22. The selection rule of satellite reflections

Besides the systematic extinctions associated with their space groups, the satellite
reflections (H K 1} or (h k1) always exhibit the selection rule for all superstructures
R, (Fe,B,), as

l=qf+pj 1)

where f and j are integers. This is a unique feature of the Vernier structures (see,
for example, Flicher et al 1967, Johnson and Watson 1976, Villenkle et al 1967).
For the case p — ¢ = 1, which was cxemplified by the diffraction patterns modelled
by R, (Fe,B,),_, (Zhao et al 1989d), this selection rule is true but not obvious. If
p—q # 1, however, the selection rule can be clearly observed. Figures 2(e) and 2(b)
are two diffraction patterns which can be described by the commensurate models
Ry;11(FesBy)z; ;. As indicated in their insets, the satellite spacing represented by 12
is approximately 25% larger than the one represented by 23. Thus figures 2(a) and
2(b) actually represent the diffraction patterns of Nd,,(Fe,B,);s and Nd, (Fe,B,);;.
Figure 2(c) is the systematics of the [130] pattern of Nd,,(Fe,B,),s, shown to indicate
the selection rule { = 15f + 17;. The selection rule of R, (Fe,B,), i also evident in
these x-ray diffraction patterns (Givord ef a/ 1986a).

3. Superspace group characterization

The satellite spacings of the electron diffraction patterns of Nd,, Fe,B, are variable
rather than definite, and one usually has 1o choose different commensuraie models ©
adapt the variation of the satellite spacings. If the difference in the satellite spacings
is ignored, the general features of the same zone {uv0] diffraction patterns, which
have t0 be described by the different commensurate superstructures, are quite similar.
This implies that it is possible to utilize a unified charactcrization within a certain
framework to describe the symmetry of Nd,,  Fe,B, compounds.

As is well known, a typical feature of incommensurate crystal structures is the
absence of their translation periodicity, and thus three-dimensional space groups no
longer apply to their symmetry characterization. As well as the usual method of
commensurate approximation, several approaches aiming at describing the symmetry
of incommensurate crystal structures have been developed. These include superspace
group theory (e.g. de Wolff 1974, 1977, Janner and Janssen 1977), the irreducible
representations of ordinary space groups within the framework of Landau theory (e.g.
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Janssen and Janner 1984) the dualistic approach (de Wolff 1984), etc. Superspace
group theory, like other approaches, has been undergoing relatively frequent
applications. Our discussion in the following sections is mainly based on the work of
Janner and Janssen (1980, hereafter referred to as 1J).

3.1. Supersymmetry of R,, Fe,B, compounds

The lattice of the R,  Fe,B, crystal consists of two sublattices: the primitive
tetragonal Fe-B sublattice (A,) and the body centred tetragonal R sublattice (A,),
which can be represented by the following basis vectors:

A} aj = (1, 0, 0) ap=(0,1,0°  a}=(0,0,¢)" (3.1)
A} a} = (1,0, 0)* ah=(0,1,0"  al=(0,0,p). (3.2)

Here p and ¢ are no longer restricted to being integers in the superspace group
description. A minimal set of vectors

aj =(1,0,0)* a; = (0, 1, 0) a3 = (0,0, q) a; =(0,0,p)" 33)

are chosen as the basis for union of A and A3. Thus every a,; (v = 1,2;

j = 1,2, 3) can be represented as the integral linear combination of vectors in
(3.3), and the matrices Z* defined by equation (2) of JJ are

1000 1000
Z'=(0 100 Z’=[0 10 0}. (3.4)
0010 0001

Consequently, the linear projections (defined by equation (6) of JJ) which map the
‘internal space’ vector b belonging to the superspace onto the three-dimensional space
appear as

mb=10 b= ax. (3.5)
Furthermore, one can obtain the matrix o defined in equation (5) of JJ
oc=(0,0,7) (3.6)

where v is defined as ¢/p. Four-dimensional superspace therefore is spanned by
(equation (4) of JJ) the basis vectors

(@1, 0) (a3, 0) (a3, —vb) (0, b). (3.7)

According to the notation in JJ, the atomic positions of the supercrystal can be
expressed in terms of

(n, +r,; —w,t1) v=12 (3.8)

where n € A, and ¢ is a vector defined in internal space. Representing a symmetry
operator of the superspace group by {( Rg, R;/(vg,v()}, one may write the symmetry
condition as

RE(“‘V + LY “Tvt) + Vg =N, + Fyejr — "Tv't! (3'9)
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and

Rit+v, =1t (3.10)
An equivalent form of (3.9) and (3.10) can be written as

Rg(n, +r,;)) +vg+mvp=n, +r,., (3.11)
and

Rgrm,t = w,, Rit. (3.12)
Also the invariance of each sublattice under the operation of a point group requires

ReA, = A, (3.13)

Hence relations (3.11)-(3.13) determine the holohedrism of the Bravais lattice.

With regard to R, Fe,B, compounds, two substructures consist of different
atoms. Therefore, one necessarily has v = /. As a consequence, equation (3.13) is
always fulfilled. Furthermore, equation (3.11) may be divided into

Rg(n, + rlj) +opt+ My =n+ 1y (3.14)
RE(nz + T'Zj) + VE + ‘ﬂ'z'v] =T, + szp . (3.15)

It can be shown that the holohedrism of the Bravais lattice spanned by the basis
vectors in (3.7) is not compatible with tetragonal symmetry. Taking 4 of P4,/ncm,
for example, as the Rg|vg of the superspace group, one easily knows that (3.14) is
satisfied owing to m;b = 0. However, for any v, the needs of (3.15) are by no means
met. Such a situation also applies for other tetragonal symmetry operations. In other
words, such a tetragonal symmetry related operator as (( Rg, R;)|(vg,v[)) does not
exist that has equations (3.14) and (3.15) satisfied simultaneously. Therefore, one has
to choose the basis vectors as selected in section 2 again. Under the newly chosen
basis vectors A = a+ b, B = b—a and C = ¢, it can be easily demonstrated that the
linear projections (3.5) and the matrix in (3.6) remain unchanged. Thus, the Bravais
lattice of the superspace group is spanned by the basis vectors

a; = (A, 0) a, = (B, 0) as = (C, —vb) aq = (0, b). (3.16)
In the notation of de Wolff er af (1981), the Bravais lattice can be represented by
P

The C centre in external space can be easily understood to be attributed to the
non-primitive translation vector (1, 1, 0) which both ‘C4,/nme’ and ‘F4/mmm’

commonly possess. The holohedrism of the Bravais lattice is then pgenerated by the
following orthogonal generators:
R1=(Mx11) Rzz(zx’—l) R3=(My$ 1) (3 17)
R,=(2,,-1) Ry =(M,, -1) Re=1(2,,1).

An implication of (3.17) is that the symmetry condition (3.12) has already been
satisfied.  Accordingly, one only needs to consider equations (3.14) and (3.15).
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As an example, taking vg = (%,O, 0) and v, = lb as the translation vector
for the orthogonal transformation R, = (M,, 1), one finds that equation (3.14}
is actually equivalent to a symmetry operation M,l(%, 0, 0) of the space group
‘C4,/nmc’ owing to w,b = 0 for v = 1. On the other hand, the operation
{(M_, D|(%, 0,0, })} is equivalent to (z, y, z) — (} - =, ¥, § + 2), a symmetric
operation of the space group ‘F4/mmm’, because of the relation mv; = lay.
This means that equation (3.15) can also be met in such a case. Therefore,
g = {(M_, 1)|(%, 0,0, -;—)} is shown to be a generator of the superspace group
of R, . Fe,B, compounds. Similarly, one can also obtain the other generators of the
superspace group. They are expressed as follows:

5= {(21,-3 "l}l(%a 0,0, %)} B = {(Mys 1n|(o, 0, 0, %)}
g = {(zy’ —1)'(0, 0! Oi %)} gs = {(M,z1 _l)l(%s 0! Os 0)} (318)
9= {(211 1)[(%9 01 0, 0)}‘

For the generators to the superspace group, their { Rglvg} part in three-dimensional
space gives rise to the following equi-points:

—

- - = 1 - =
T, Y,z 7T, Y, % T, Y,z §+£,y,z

L]

(3.19)

s

- > 1
T, Y,z 7~ &, Y, L Ty Yy 2 §—ans2-

L]

Additionally, considering the non-primitive translation (%, %, 0) common to both
‘C4y/nmc’ and ‘F4/mmm’, one can determine that all the (Rgivg)s of the
superspace group form a three-dimensional space group ‘Cmma’. In the notation
of de Wolff er al (1981), the superspace group of Ry, ,Fe,B, compounds can thus be
represented by P e, Its Bravais lattice has the basis vectors:

(1,0, 0, 0) (0,1,0,0) (0,0, 1, —) (0,0,0,1) (1, 3,0, 0).

(3.20)
H
The equi-points generated by this superspace group are
t '! - ij t T = l—t l 7] > i_t
T Y % 7% Y 2, Ty Yy 233 ) 2+.’L‘, Y, %, 3 (321)
i,g,f,t_ %+.’E,y,2,‘t—, E’g!z!%'l'ta %_xaysza%'*'t.

Cmmm ; :
Apparently the superspace group P~™"F™ is centrosymmetric.

3.2 Systematic extinctions associated with the superspace group

First of all, the Bravais lattice of the superspace group ch‘s"i“‘, as with a non-

primitive three-dimensional Bravais lattice, leads to a systematic extinction condition
F(HK fj)=0 unless H + K =2n for n integers. (3.22)

The characteristic sets of systematic extinctions related to certain operations of four-
dimensional superspace groups have been tabulated by de Wolff er al (1981). With
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Figure 3. The [001] electron diffraction pattern of Nd;; FesB4. The indices in its inset
are based on the diffraction vector D = HA* + KB* + Lc¢*(Fe-B) + jq. Note the
extinction rules H + K = 2» and H = 2n.

regard to the superspace group of R, Fe,B, compounds, the operator ({) gives rise
to

F(HRK00) =0 unless H = 2n for n integers. (3.23)

Associated with the two symmetry elements (') along A and B one also has the

E]

following respective systematic extinction conditions
FIOK fj)=0 unless j = 2n for n integers. (3.24)

and
F(HOfj)=0 unless j = 2n for n integers. (3.25)

By simple mathematical transformation, one finds that the indices H and K,
corresponding to the rechosen basis vectors A, B and C, are related to the indices
h and k, corresponding to the basis vectors a, b and c in the form

H=h+k (3.26)

and
K=h-k. 3.27)

Therefore it can be easily understood that the systematic extinction condition in
(3.22) is ascribed to the rechosen basis vectors. In view of the fact that (H K 0 0)
represents basic reflections in diffraction patterns, the related systematic extinction
condition should only be determined by the space groups of cach substructure. Thus
the condition H = 2n in (3.23) is actually equivalent to the extinction condition
h4 k = 2n for (h kQ0) reflections, the common requirement of both P4,/nem
and /4/mmm.
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According to equation (3.3), the diffraction vectors of R, Fe,B, compounds can
be represented by

D=HA"+ KB" + fe*(Fe-B) + jc*(R). (3.28)
By a simple transformation, one has a new form of the diffraction vector
D=HA"+ KB' + Lc'(Fe-B) + jq (3.29)

where L = f+ j and ¢ = ¢"(R) — ¢*(Fe~B). In such a case, the superspace group
of the Ry, Fe,B, compounds changes its form into N C:";’i‘“ in the notation of de
Wolff ef al (1981).

4. Experimental results

Examples of typical electron diffraction patterns are presented in figures 4(a) and
5(a). The diffraction of Nd,  Fe B, compounds shows a strong dynamic effect (Zhao
et al 1989a), which can be actually confirmed by a significant variation of satellite
reflections in the (001) row of the different [uv0] patterns, obtained by tilting
the same crystal fragment. The multi-diffraction must be taken into account before
the systematic extinction conditions can be extracted from the observed diffraction
patterns. Figures 4(b) and 5(b) are the systematics of the diffraction patterns given
in figures 4(a} and 5(a), respectively, and they are indexed in terms of the diffraction
vectors given in (3.29). The observed extinction conditions are summarized as follows:

F(HKLj)=0 unless H + K =2n for n integers 4.1)
F(HEO00) =0 unless H = 2n (K = 2n) for n integers “.2)
F(HGLj)=10 unless j = 2n for o integers 4.3)
and

Foolj)=0 unless 7 = 2n for n integers. “.4

In comparison with those in (3.22)-(3.25), one finds that the predicted systematic
extinction conditions associated with the superspace group are basicaily in agreement
with those extracted from the observed diffraction patterns.

In the case of the commensurate superstructures R, (Fe,B,),, only three indices
( H K1) are needed. Their diffraction vectors, by transformation from relation (3.28),
can be represented by

D=HA"+ KB" +(qf +pi)c (4.5)
where ¢* is equal to c*(Fe-B)/p or ¢*(R)/q. Therefore, the index { in the case of

commensuratp superstruqtufe models 1"?:][,(1%34,134),‘T is glways equal to g f 4 pj, where
f and ; are integers. This is the selection rule described by (2.11).
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Figure 4 (a) An example of the {0100] clectron diffraction pattern. The indices are
based on the Fe-B sublattice. (b) Systematics of the [0100] patlern, indexed .in terms
of the diffraction vector D = HA* + KB* 4+ Le*(Fe-B) + jq.
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Figure 5. (@) An example of the [1100] electron diffraction pattern. The indices are
based on the Fe-B sublatlice. (b) Systemalics of the [1100] pattern, indexed in terms
of the diffraction vector D = HA* + KB* 4+ Lc*(Fe-B) + jq.

5. Concluding remarks

It has been shown that the symmetrics of the superstructures R,(Fe,B,), can be
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either P4, /n, or Pcen, or ‘Ccca’, depending on the parity combinations of integers
p and g. In the demonstration of the superspace approach, however, it is not stated
that p and g must be strict integers. Therefore, the characterization of superspace
group symmetry is obviously a unified one. The symmetry of each member of
the infinitely adaptive structures (either the truly incommensurate structures or the
unusual long-period superstructures) in the R, Fe,B, series can be described by
a four-dimensional superspace group. The related systematic extinction conditions
can be utilized to understand the observation of both basic reflections and satellite
reflections in the diffraction patterns. One may regard the translation symmetry
of the R, Fe,B, compounds as concealed in the superspace and recovered by the
superspace group. In accordance with this point, the systematic extinction conditions
of these compounds may also be concealed in the superspace. It should be pointed out
that in both approaches, the interaction between the two substructures was not taken
into account. In fact, the two substructures modulate each other; the twist modulation
of the Fe tetrahedra has been reported by Bezinge ef al (1985) and Givord et al (1985,
1986a,b). In the case of R, Fe,B, compounds, however, ignoring this modulation
leads to results agreeable with the experimental space group assignments in the case of
the commensurate approximation. Furthermore, the observed systematic extinctions

are actually somewhat more than those predicted by the superspace group PC:";}!“.

This implies that R, Fe,B, compounds may be of even higher symmetry than that
assumed in this paper. It may be reasonable to think that the modulation may not
have an effect on the superspace group of R, Fe,B, compounds; as a matter of fact,
such a situation has been found to occur for (TTF),I;__. (Janner and Janssen 1980).
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