
A group theoretical consideration of the diffraction patterns of Nd1+ epsilon Fe4B4

compounds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 9221

(http://iopscience.iop.org/0953-8984/4/47/004)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 12:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys: Condens. Matter 4 (1992) 9221-9234. Printed in lhe U K  

A group theoretical consideration of the diffraction patterns 
of Ndl+,Fe4B4 compounds 

Z B Zhao and Shane Y Hang 
Department of Mechanical and Materials Engineering, Wight Slate University. Dapon, 
OH 45435, USA 

Received 18 May 1992, in final form 17 August 1992 

AbslracL The entire aysla l  structure of each member of the series of Rt+,FerB, 
compounds is h i l t  up from the interpenetration of WO inmmmensurable S U b l N C l U T s :  

the R substructure and lhe Fe-B subslruclure. In their [uvO] elearon diffraction 
patlems, satellite refleclions due to the mcdulation occur in addilion to the basic 
refleclions corresponding to either the Fe-B substruclure or the Nd subtrudure. 'b 
study the systematic exlinction mnditions for the obsewed x-ray and electron diffraction 
pattems, symmelry analyses have been performed by means of WO approachesly 
mnsidering h e  three-dimensional space p u p  of the mmmensurale supercells, and 
by considering the fourdimensional superspace gmup developed by de Wolff a al . 
The individual symmetry of the substructure has Sewed as the basis far each approach 
in this paper. Examination of the symmetry under lhe commensurate approximation 
is the crucial step for the structure analysis of the Vernier StNctureS. However, lhe 
occurrence and distribution of satellite reflections in the clcnmn diffraction patlems 
canno1 be interpreted within this framework. superspace group characlerhtion of 
these compounds provides a method of giving some insighl into the general features 
of the conditions of the systematic ednction ~ b s e ~ e d  in lhe diffraction pattems of 
Rl+,FerBr mmpounds. 

1. General features of RI+,Fe,B4 compounds 

Several experimental and theoretical investigations concerning the crystal structural 
aspects of R1+,Fe,B, (R represents rare-earth elements, e.g. R = Ce, Pr, Nd, Sm, 
Gd and Tb) compounds have been reported in recent years (Braun et a1 1982, 
Bezinge et a1 1985, 1987, Givord et a1 1985, 1986a,h, Tian et a1 1988, Zhao and 
Ma 1988, 1989, Zhao el a/ 1989a,b,c,d). Based on the atomic parameters reported 
by Ku?" and Bilonizhbo (1975) and Givord ef a1 (1986b), the (Wl) and (110) 
crystallographic projections of Nd,,(Fe,B,), and NdCo,B4 are visualized in figure 1. 
The entire crystal structure is formed by the interpenetration of two substructures. 
One is the Fe-B substructure, a three-dimensional framework consisting of edge- 
sharing iron tetrahedra and boron atom pairs. The other one is the R substructure, 
which is defined by R atoms in the form of infinite chains along the c axis. These 
two substructures, both of tetragonal symmetry, have the same dimensions in the 
tetragonal basal plane. However, their periods in the c direction do not match 
each other. Moreover, the value of c(Fe-B)/c(R) as a function of composition 
z in R,Fe,B4 alloys is approximately expressed by ratios of two relatively small 
integers. Such a feature can be characterized by the chimney-ladder Structure or 
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the Vernier structure, which was also found to occur in MnSi,-, (e.g. Knott ef al 
1967, Jeitschko and F’arthk 1967) and Ba,,,Fe,S,, (e.g. Grey 1974, Hoggins and 
Steinfink 1977). Electron diffraction and electron microscopic studies on Ri+,Fe4B, 
compounds with R = PI v i a n  et a1 1988) and R = Nd (Zhao et a1 1989a,b,c,d) 
revealed the incommensurability of their crystal structures. Despite the fact that 
more and more incommensurately modulated crystal structures have been found in 
solid materials, compounds which consist of WO or more mutually incommensurable 
crystallographic subsystems, such as Ndit6Fe4B4, are less common. Also, it was 
reported by Zhao ef al (19894) that these compounds where R = Nd present a novel 
example of the infinitely adaptive structures proposed by Anderson (1973, 1977). 
Since the periodicity mismatch happens only in the c direction (see figures l(b) and 
l(c)), the most characteristic electron diffraction patterns for R,,,Fe,B, compounds 
are the [uvO]  sections in which the satellite reflections appear simultaneously with 
the basic reflections. The Occurrence and distribution of the systematic extinction 
mnditions in the observed diffraction patterns of Ri+,Fe4B, compounds, generally 
associated with the symmetry of their crystal structures, have not been well interpreted 
as yet. In order to characterize the symmetry of R,+,Fe,B, compounds, and then to 
understand their diffraction patterns, two approaches are attempted in the following 
sections. The fundamentals for each approach will be briefly summarized separately. 

Z B Zhao and S Y Hong 

2. Three-dimensional space group in the commensurate supereell 

Strictly speaking, the periodicity of R,+,Fe,B, compounds should be defined‘by two 
translation vectors c(Fe-B) and c(R). In spite of this, one can always choose a number 
of pairs of integers p and q, within a specified tolerance, to meet the need of the 
relation p/q = c(Fe-B)/c(R). Consequently, an artificial superstructure R,(Fe,B,), 
whose c dimension is defined by the smallest common multiple of c(Fe-B) and c(R) 
(i.e. c = pc(R) = qc(Fe-B)), can be constructed. In such a way, one recovers the 
translational symmetry of the compounds and, hence, three-dimensional space group 
characterization applies. 

21. Commensurafe models and heir space groups 

The symmetry relation between a derivative crystal structure and its parent structure 
has been discussed by Buerger (1947). It was proposed that the symmetry of a 
derivative structure is a subgroup of the space group of the parent structure. In 
the case of R,+,Fe,B, compounds, the symmetry of the entire crystal structure must 
be compatible with the individual symmetry of both the substructures. Either the 
Fe-B substructure or the R substructure can be regarded as the parent structure of 
the commensurate superstructure R,(Fe,B,), . Consequently, the highest symmetry 
of R,(Fe,B,), is the maximum common subgroup of the space groups of the F e B  
substructure and the R substructure. As reported by Givord et a1 (1985), the symmetry 
of the Fe-B Substructure is P4*/ncm and that of the R substructure is I 4 / m m m .  
In view of the centrosymmetries of both substructures, it is reasonable to suppose that 
the superstructure R,(Fe,B,), is also centrosymmetric, and one should superimpose 
its symmetry centre onto those of I 4 / m m m  and P4,/ncm. Here the space group 
of the substructures are expressed in terms of the space group generators and the 
translation vectors. If we define 2 / m  at (i, -;, a )  with respect to 4 as the origin of 
P.lz/ncm, one may divide its symmetry elements into two parts: 
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1.1 

Figure 1. (a) ?he (001) aysrallographic projection of NdCo4B4 (lhal for Nd,+,Fe4B4 
is slightly different). (b) and (c) ?he ( 1  10) clyslallographic projections of NdCo4B4 
and Ndl+,FeqBI, mpectively, which visualize the feature of a Vernier sIructure or a 
chimneyladder slmclure. Large circle, Nd alom; medium circle, Fe (or Co) atom; small 
circle, B atom. me figures were produced ty using the ~ruclural parameters of Kutma 
and Bilanizhba (1975) and Givard n ol (19Mb).) 

(b) an orthogonal part 

Y, 2 2 " , r - Y ? z  1 1 I 1 5 - Y ,  x, 1/29 + 2 

;+ y, 5 ,  1 / 2 q -  z 

Y , z - " ,  1/29+ z 

5, f + y ,  1/29 - z 

0, f +  x ,  1/2q-  2 

x , ; - y , 1 / 2 g + z  f - z , y , 1 / 2 q + z  1 -  2 Y , ? - " ' f  Y,X,Z. 

_ -  

0, 5, i 1 
f+", 0 , 1 / 2 q -  z i + Y ,  i + x ,  i 

5, 0, 5 f + x, f +  Y, i 
1 

(2.2) 

In the case of the R substructure, the 2 / m  which is at (a ,  -4, 4 )  with respect to 
4 / m m n ~  is also chosen as the origin of I4/mmm. Then it follows that: 
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o-e~e--.--e+-u-- 

Figure L (4) and (b)  n o  examples of ditfraclion patterns which a n  k simulated bj 
the mmmensurate models Rz,+~(F~~B~)I,-~: (0 )  for j = 8 and ( b )  far j = 9. (c) 
-1ematio of h e  [130] pallem for Ihe suprnlruclurc R I , ( F . = ~ B ~ ) ~ ~ .  Note h e  sdection 
rule of I = 15 f + 17j, as discussed in lhe text. 

(a) for the translation part 

(1, 0,O) (0, 1, 0)  (0, 0, 1lP) ( f ,  ;, 1/2P) (2.3) 
@) for the orthogonal part 

x, Y, 2 5 ,  9, 1/2P + 2 g , + + z , z  ; + y , z , z  

z , ; + y , i  T + Z , l j , i  1 

5 ,  9, i x, Y ,  1/2P - 2 Y, - 2, 2 2 - Y, x> 

Y, x, i g,  5, 1/2p - 2 

Y. x, I/2P + 2. 

1 1 (2.4) 

lj. 5 ,  1 I 
I, - Y, z 2 - 2, Y, 2 
The maximum number of common subgroups should he formed by the maximum 
number of mathematical intersections of operations (2,1)-(2.4), By proper repetition 
of the translation operations in (2.1) and (2.3), common translation vectors for both 
space groups can be easily obtained, which are expressed as 

(1, 0,O) (0 ,  1, 0) (0, 0, 1). (2.5) 

with regard to the orthogonal generators, the parity of p and q needs to be taken into 
account. By applying the translational vector (i, ;, 1/2p) p times to (i  + Y, Z,z), 
for instance, one has the transformation form for I4/mmm: 

(;, +, 1/2P)P(4 + Y, 5 ,  2) - ((P+ 1)/2 + Y, P/2- x> ; + 2). (2.6) 
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When p is odd, the resultant in (2.6) is (y, f - X, f + 2). Its qui-point, on the 
other hand, can also be readily obtained from P42/ncm by applying the aanslation 
vector (‘40, l / q )  to (y, 4 - x, ; + z )  ( ( q  - 1)/2) times if q is supposed odd. 

Similarly, it can be shown that the obtained intersections of the orthogonal 
generators may be classified into the following three categories. 

(1) p odd and q odd 

1 I 1 1 1 I, Y, 1 - 1  2 ‘ 2  - - y , z  3 - Y, 2.2 + z y, 3 -XI, z 

*, 8, i ;+x,;+y,i I+y.i.,f-z 8, 4 +I, 3 - 2. (2.7) 1 1 

Apparently, the orthogonal generators in (2.7) combine with the translation vectors 
in (2.5) and are actually the entire generators of the space group P%/n.  
Known examples for this case are Ce,(Fe4B4),, Pr21(Fe4B4)ly, Nd41(Fe4B4)3y, 
Sml,(Fe4B4),5, Gd,(Fe4B4), and Tb,,(Fe,B,),, (ParthC and Chabot 1984, Bezinge 
el al 1985). Indeed the practical structure refinement of Sm,,(Fe4B4),, was made 
utilizing the same space group assignment (Bezinge er RI 1985). The diffraction 
patterns given in figures 2(a) and (b), which can be ascribed to Nd17(Fe4B4)1S and 
Nd1,(Fe4B4),,, also belong to this category. 

(2) p even and q odd 

1 i. l + y  ! - 2  i + x , g , i - z  I I 

f + X , f + Y , i  I, 5-y, 1 2 + z  I 2 x,y, f + z .  
(2.8) 

2, Y, z 1 - x  2 ’ 2  --y,z ’ 2  ’ 2  
1 _ -  5, 03 i 

Obviously, the operations in (2.5) and (2.8) constitute an orthorhombic space group 
Pccn. Givord et al (1985, 1986a.b) have performed the structure refinements for 
two commensurate superstructures Ndl,(Fe4B4), and Gd8(Fe4B4), just based on this 
space group. 

(3) p odd and q even 
1 1 x, Y, - x ,  3 -y, z y, x, ; + z f +  Y. f +x, f -  2 

1 (2.9) z, g, i & + x , f + y , i  g , i . , 2 - z  1 5-y,+-x,;+z. 

Unlike the cases in categories (1) and (2). the orthogonal operations in (2.9), when 
combined with (2.5), cannot form either a tetragonal space group or an orthorhombic 
space group. The generators in (2.9), however, reveal the existence of several 
symmetry operations, such as centrosymmetry and two c-glide planes along the 
diagonals. Thus an alternative treatment was attempted by choosing an enlarged 
supercell with A = a + b, B = b - a and C = c. For such a selected supercell, 
P42/ncm and I4/mmm then take the forms of ‘C4z/nmc’ and ‘F4/mmm’,  
respectively. Using a similar procedure to the one mentioned above, the intersection 
of their orthogonal part under the implication of odd p and even q can be obtained, 
which is expressed as 

By noting the extra non-primitive translation (i ,  $, 0) with reference to 
(A, B, C), it readily known that the space group for this case is ‘Ccca’ in the 
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revised supercell. Up until now, no structure analysis has been made using this 
space group. However, the actual structures of Ndi+,Fe4B4 compounds inevitably 
make several numbers of their infinitely adapted structures fall into or approach 
such a category as the commensurate model owing to the. quasi-continuous variation 
of c(Fe-B)/c(R) as a function of z in R,Fe4B4. Examples of this case include 
Nd,(Fe,B,),, Ndl,(Fe4B4),o, Nd,,(Fe,B,),, and Nd,,(Fe,B,),,, which were observed 
by electron diffraction (Zhao a a1 1989d). 

As demonstrated above, the symmetry of the commensurate superstructures 
R,(Fe,B,), depends on the parity of p and q, which can be explained by P4,/n, 
Pccn  and ‘Ccca’ respectively, for three different parity combinations of p and q. 

22. The selection mle of safeltite reflections 

Besides the systematic extinctions associated with their space groups, the satellite 
reflections (H h’1) or ( h  k l )  always exhibit the selection rule for all superstructures 
Rp(Fe4B4), as 

[ = q f + p j  (2.11) 

where f and j are integers. This is a unique feature of the Vernier structures (see, 
for example, Flieher ef a1 1967, Johnson and Mtson 1976, Vollenkle et a1 1967). 
For the case p - q = 1, which was exemplified by the diffraction patterns modelled 
by RP(Fe4B4&-, (Zhao ef a1 1989d), this selection rule is true but not obvious. If 
p - q # 1, however, the selection rule can be clearly observed. Figures 2(a) and 2(b) 
are WO diffraction patterns which can be described by the commensurate models 
R2Jti(Fe4B4)2J-i. As indicated in their insets, the satellite spacing represented by 12 
is approximately 25% larger than the one represented by 23. Thus figures 2(a) and 
2(b) actually represent the diffraction patterns of Nd,,(Fe4B4)15 and Nd,,(Fe4B4),,. 
Figure 2(c) is the systematics of the [ i  301 pattern of Nd17(Fe4B4)15, shown to indicate 
the selection rule 1 = l5f + 17j. The selection rule of R,(Fe,B,), is also evident in 
these x-ray diffraction patterns (Givord ef al 1986a). 

3. Superspace gmup characterization 

The satellite spacings of the electron diffraction patterns of Ndit,Fe,B4 are variable 
rather than definite, and one usually has to choose different commensurate models to 
adapt the variation of the satellite spacings. If the difference in the satellite spacings 
is ignored, the general features of the same mne [uuO] diffraction patterns, which 
have to be described by the different commensurate superstructures, are quite similar. 
This implies that it is possible to utilize a unified characterization within a certain 
framework to describe the symmetry of Nd,+,Fe4B4 compounds. 

As is well known, a typical feature of mcommensurate crystal structures is the 
absence of their translation periodicity, and thus three-dimensional space groups no 
longer apply to their symmetry characterization. As well as the usual method of 
commensurate approximation, several approaches aiming at describing the symmetry 
of incommensurate crystal structures have been developed. These include superspace 
group theory (e.g. de Wolff 1974, 1977, Janner and Janssen 1977), the irreducible 
representations of ordinary space groups within the framework of Landau theory (e.g. 
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Janssen and Janner 1984) the dualistic approach (de Wolff 1984), etc. Superspace 
group theory, like other approaches, has been undergoing relatively frequent 
applications. Our discussion in the following sections is mainly based on the work of 
Janner and Janssen (1980, hereafter referred to as JJ). 

3.1. Supenymmeby of R,,,Fe,B, compounds 

The lattice of the RlteFe4B4 crystal consists of two sublattices: the primitive 
tetragonal Fe-B sublattice ( A , )  and the hody centred tetragonal R sublattice (Az) ,  
which can he represented by the following basis vectors: 

Ai : ai1 = (1, 0, 0)’ aiz = (0, 1 ,  0)’ ab = (0, 0, q)*  ( 3 4  

A; : a;1 = (1, 0, 0)’ ah = (0, 1, 0)’ a; = (0, 0, p ) ’ .  (3.2) 

Here p and q are no longer restricted to being integers in the superspace group 
description. A minimal set of vectors 

a; = (1, 0, 0)’ a; = (0, 1.0)’ a; = (0, 0, 4)’ a; = (0, 0, p)’ (3.3) 

are chosen as the basis for union of A; and A;. Thus every avj (v = 1,2; 
j = 1, 2, 3) can be represented as the integral linear combination of vectors in 
(3.3), and the matrices 2” defined by equation (2) of JJ are 

z’= (; 0 1 1 0 ; 0 1) z z = ( i  g s)- (3.4) 

Consequently, the linear projections (defined by equation (6) of JJ) which map the 
‘internal space’ vector b belonging to the superspace onto the three-dimensional space 
appear as 

rrlb = 0 szb  = aB. (3.5) 

Fhrthermore, one can obtain the matrix U defined in equation (5) of JJ 

U = (0, 0, 7 )  (3.6) 

where y is defined as q / p .  Four-dimensional superspace therefore is spanned by 
(equation (4) of JJ) the basis vectors 

(al ,  0) (a2,  0) (a3, -+) (0, b ) .  (3.7) 

Aceording to the notation in JJ, the atomic positions of the supercrystal can be 
expressed in terms of 

(nu + r U j  - n,t,t) Y = 1,2  (3.8) 

where n E AV and t is a vector defined in internal space. Representing a symmetry 
operator of the superspace group by {(RE, RI/(uE,uI)], one may write the symmetry 
condition as 

RE(n,  + r v j  - rut) + uE = ny, + rv,i ,  - rrv,t’ (3.9) 
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Rit + vi = t’. (3.10) 

An equivalent form of (3.9) and (3.10) can be written as 

 RE(^, + r V j )  + V E  + rv ,u ,  = nv, + rv,;, (3.11) 

and 

R,n,t = nv, Rit. (3.12) 

Also the invariance of each sublattice under the operation of a point group requires 

REAu = A v # .  (3.13) 

Hence relations (3.11)-(3.13) determine the holohedrism of the Bravais lattice. 
With regard to RI+,Fe,B, compounds, two substructures consist of different 

atoms. Therefore, one necessarily has v = U’. As a consequence, equation (3.13) is 
always fulfilled. Furthermore, equation (3.11) may be divided into 

R ~ ( n l  +TI;) + V E  + n1q = ni + Ti;, 

R ~ ( n 2  + r2;) + W E  + r2q = n2 + r z j , .  

(3.14) 

(3.15) 

It can be shown that the holohedrism of the Bravais lattice spanned by the basis 
vectors in (3.7) is not compatible with tetragonal symmetry. Tiking 4 of P4z/ncm, 
for example, as the REluE of the superspace group, one easily knows that (3.14) is 
satisfied owing to rr,b = 0. However, for any vi,  the needs of (3.15) are by no means 
met. Such a situation also applies for other tetragonal symmetry operations. In other 
words, such a tetragonal symmetry related operator as ( (RE,  RI)I(uE,ui)) does not 
exist that has equations (3.14) and (3.15) satisfied simultaneously. Therefore, one has 
to choose the basis vectors as selected in section 2 again. Under the newly chosen 
basis vectors A = a+ b, B = 6 - a  and C = c, it can be easily demonstrated that the 
linear projections (3.5) and the matrix in (3.6) remain unchanged. Thus, the Bravais 
lattice of the superspace group is spanned by the basis vectors 

al  = ( A ,  0) a2 = ( B ,  0) a3 = (C, -76) a, = (0, a). (3.16) 

In the notation of de Wolff ef a1 (1981). the Bravais lattice can be represented by 

The C centre in external space can be easily understood to be attributed to the 
non-primitive translation vector ( 4 ,  4 ,  0) which both ‘C4z/nmc’ and ‘F4/mmm’ 
commonly possess. The holohedrism of the Bravais lattice is then generated by the 
following orthogonal generators: 

PET”. 

An implication of (3.17) is that the symmetry condition (3.12) has already been 
Accordingly, one only needs to consider equations (3.14) and (3.15). satisfied. 
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As an example, taking uE =, ( f ,  0, 0) and uI = $b  as the translation vector 
for the orthogonal transformation R, = ( M = ,  l), one finds that equation (3.14) 
s actually equivalent to a symmetry operation M,I( f ,  0, 0) of the space group 
'C$ /nmc'  owing to rr,b = 0 for U = 1. On the other hand, the operation 

operation of the space group ' F 4 / m m m ' ,  because of the relation r2v1 = ?aB. 
This means that equation (3.15) can also be met in such a case. ThCIefOIC, 
g1 = { ( M = ,  l)l(i, 0, 0, 4)) is shown to be a generator of the superspace group 
of Rl+,Fe,B4 compounds. Similarly, one can also obtain the other generators of the 
superspace group. They are expressed as follows: 

{(hfs, 1)1($, 0, 0, f ) )  is equivalent to ( x ,  y, Z) -t (?  1 - X, y, $ + z ) ,  a symmetric 
1 

92= { ( L  -1)I(f, 0, 0, f ) )  9 3  = { ( M y ,  l ) l (O ,  0, 0, $1) 
g4= tVY, -1)I(O, 090, ;)I ss = { ( M * ,  -l)l($, 0, 0, 0)) (3.18) 

9 6 =  l)l(f? O? O, O)). 

For the generators to the superspace group, their { REIuE) part in three-dimensional 
space gives rise to the following equi-points: 

I 

1 

I, Y, z i - 2, B, 2, Y, z + I, B, 2 

E ,  0 ,  i I - - I ,  Y, 5 x, 0 ,  z - x, Y, z .  

1 

1 
(3.19) 

Additionally, considering the non-primitive translation ( f ,  ;, 0) common to both 
'C$ /nmc'  and 'F4/mmna' ,  one can determine that all the (RE(uE)s of the 
superspace group form a three-dimensional space group ' C m m a ' .  In the notation 
of de Wolff a a1 (1981), the superspace group of R,+,Fe4B4 compounds can thus be 
represented by Pc,",y". Its Bravais lattice has the basis vectors: 

(1,0, 4 0 )  (0, 1, 0, 0) (0, 0, 1, -7) ( O , O , O ,  1) ($, ;, 0, 0). 
(3.20) 

The qu i -p in t s  generated by this superspace group are 

_ _  1 E ,  y, 2 , ;  - t ,  1 +I, 8, i, f - t  

* , g , i , f  f + x , y , i , i ,  x, 0 ,  2, ; + t ,  2 I, Y, 2, ; + t .  

X,Y, z , t  2 I, e, z > t  
(3.21) 

1 _ -  

Apparently the superspace group Pc,",y"' is centrosymmetric. 

3.2. SLsfematic erfinclions associated wifh the superspace group 

First of all, the Bravais lattice of the superspace group Pc;ya, as with a non- 
primitive three-dimensional Bravais lattice, leads to a systematic extinction condition 

for n integers. (3.22) 

The characteristic sets of systematic extinctions related to certain operations of four- 
dimensional superspace groups have been tabulated by de Wolff ef a1 (1981). With 

F( H IC fj) = 0 unless H + Ii = 2n 
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Figure 3. The [OOI] eleamn diRraction pattern of Ndl+,FedB4. ?he indicm in its inset 
are based on the diffraction vector D = HA' + KB' + Lc'(Fe-B) i jq .  Note the 
extinction rules H + Ii. = 21% and H = 2n. 

regard to the superspace group of R!+,Fe,B, compounds, the operator (i) gives rise 
to 

F( H K O  0)  = 0 unless H = 211 for n integers. (3.23) 

Associated with the two symmetry elements ( ' y )  along A and B one also has the 
following respective systematic extinction conditions 

F ( 0  I< f j )  = 0 unless j = 2n for n integers. (3.24) 

and 

F( H O f  j) = 0 unless j = 2n for n integers. (3.25) 

By simple mathematical transformation, one finds that the indices H and It-, 
corresponding to the rechosen basis vectors A, B and C, are related to the indices 
h and k, corresponding to the basis vectors n, b and c in the form 

H = h + k  (3.26) 

and 

li. = h - k. (3.27) 

Therefore it can be easily understood that the systematic extinction condition in 
(3.22) is ascribed to  the rechosen basis vectors. In view of the fact that ( H  l i 0  0) 
represents basic reflections in diffraction patterns, the related systematic extinction 
condition should only be determined by the space groups of each substructure. Thus 
the condition H = 2n in (3.23) is actually equivalent to the extinction condition 
h + k = 2n for ( I t  $00) reflections, the common requirement of both P42/ncm 
and I4/mmm. 



Dflraction paitems of Nd,+,Fe,B, compounds 9231 

According to equation (3.3), the diffraction vectors of RI+,Fe4B4 compounds can 
be represented by 

D =  H A ' + K B ' + f c ' ( F e - B ) + j c ' ( R ) .  (3.28) 

By a simple transformation, one has a new form of the diffraction vector 

D = H A '  + ICB' + Lc*(Fe-B) + j q  (3.29) 

where L = f + j and q = c'(R) - c*(FeB). In such a case, the superspace group 
of the R,+,Fe4B4 compounds changes its form into NcFs?'' in the notation of de 
Wolff d a1 (1981). 

4. Experimental results 

Examples of typical electron diffraction patterns are presented in figures 4(a) and 
S(a). me diffraction of Nd,+,Fe4B4 compounds shows a strong dynamic effect (Zhao 
el a1 1989a), which can be. actually confirmed hy a significant variation of satellite 
reflections in the (001) row of the different [ut101 patterns, obtained by tilting 
the same crystal fragment. The multi-diffraction must be taken into account before 
the systematic extinction conditions can be extracted from the observed diffraction 
patterns. figures 4(b) and 5(b) are the systematics of the diffraction patterns given 
in figures 4(a) and S(a), respectively, and they are indexed in terms of the diffraction 
vectors given in (3.29). The observed extinction conditions are summarized as follows: 

F( H K L j )  = 0 for n integers (4.1) 

F ( H I c O O ) = O  unless H = 2n (IC = 2n) for n integers (4.2) 

F ( H 0 L . j )  = 0 unless j = 2n for n integers (4.3) 

unless H + li = 2n 

and 

F(0  O l  j) = 0 unless j = 2n for n integers. (4.4) 

In comparison with those in (3.22)-(3.25), one finds that the predicted systematic 
extinction conditions associated with the superspace group are basically in agreement 
with those extracted from the observed diffraction patterns. 

In the case of the commensurate superstructures R,(Fe,B&, only three indices 
(H  IC 1 )  are needed. Their diffraction vectors, by transformation from relation (3.28), 
can be represented by 

D = HA* + ICB' + ( q  f + p j ) c '  (4.5) 

where C* is equal to c*(Fe-B)/p or c'(R)/q. Therefore, the index 1 in the case of 
commensurate superstructure models R,(Fe,B,), is always equal to q f  + pj ,  where 
f and j are integers. This is the selection rule described by (2.11). 
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Figure 4 (0) An example of the [OI 001 eleetmn diffraction pattern. ?he indices are 
based on the F-B sublattice (b) Systematics of the [OlOO; pattern, indexed in terms 
of the diffraction vector D = H A '  + A'B' + Lc'(Fe-B) + jq .  

._ 
1127 11% 1% ll?l - - 

.. 
11%. 1111 1111 1120 OOX 0022 0003 o w 2  - 

_. .. 
iiii 1111 1120 

... 
1120 

Figure 5. (a) An example of the [i  1001 electmn dilfraction pattern. n e  indices are 
based on the Fe-B sublattice. (b) Systematics of the [i 1001 pattern. indexed in terms 
of the diffraction vector D = HA' + {<B.  + Le*(Fe-B) + jq .  

5. Concluding remarks 

It has been shown that the symmetries of the supentructures R,(Fe,B,), can be 
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either P q l n ,  or Pccn, or ‘Ccca’, depending on the parity combinations of integers 
p and q. In the demonstration of the superspace approach, however, it is not stated 
that p and q must be strict integers. Therefore, the characterization of superspace 
group symmetry is obviously a unified one. The symmetry of each member of 
the infinitely adaptive structures (either the truly incommensurate structures or the 
unusual long-period superstructures) in the R,+,R,B, series can be described by 
a four-dimensional superspace group. The related systematic extinction conditions 
can be utilized to understand the observation of both basic reflections and satellite 
reflections in the diffraction patterns. One may regard the translation symmetry 
of the R,+,R4B4 compounds as concealed in the superspace and recovered by the 
superspace group. In accordance with this p i n t ,  the systematic extinction conditions 
of these ampounds may also be concealed in the superspace. It should be pointed out 
that in both approaches, the interaction between the two substructures was not taken 
into account. In fact, the two substructures modulate each other; the twist modulation 
of the Fe tetrahedra has been reported by Bezinge et a1 (1985) and Givord et a1 (1985, 
1986a,b). In the case of R,+,Fe,B, compounds, however, ignoring this modulation 
leads to results agreeable with the experimental space group assignments in the case of 
the commensurate approximation. Furthermore, the observed systematic extinctions 
are actually somewhat more than those predicted by the superspace group P c z y a .  
This implies that R,+,Fe,B, compounds may be of even higher symmetry than that 
assumed in this paper. It may be reasonable to think that the modulation may not 
have an effect on the superspace group of RI+,R4B4 compounds; as a matter of fact, 
such a situation has been found to occur for (m),Is-, (Janner and Janssen 1980). 
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